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a b s t r a c t

We measured accuracy of object identification across illuminations on the basis of color cues. Four simi-
larly shaped real objects, three of the same reflectance, were separated into pairs under distinct colored
real lights. Observers were asked to pick the odd object. Correct and incorrect identifications formed sys-
tematic patterns that could not be explained by color-constancy, contrast-constancy, inverse-optics or
neural-signal matching algorithms. The pattern of results were simulated by an algorithm that purposely
made the incorrect assumption that color constancy holds, and used similarity between perceived object
colors, along the difference vector between illuminant colors, to identify objects of the same reflectance
across illuminants. The visual system may use this suboptimal strategy because the computational costs
of an optimal strategy outweigh the benefits of more accurate performance.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The human brain creates a world of colored objects and illumi-
nants in which perceived colors are functions of light spectra. For
each retinotopic location, this operation requires multiple classes
of neurons tuned to different spectral distributions. The cost for
this is not only decreased spatial resolution, but also added neural
computation. One of the main benefits of these computations is
thought to be reliable identification of objects and materials under
different lighting conditions (Healey & Slater, 1994; Slater &
Healey, 1996), especially when objects do not differ in shape or
texture, such as fruits of different degrees of ripeness.

When confronted with a scene like that shown in Fig. 1, observ-
ers feel confident that they can divide the scene into sunny and
shaded segments. Since the scene is imaged from above, it consists
wholly of terrain, and no sources of light are visible. Observers use
the geometrical cue of long fairly straight transitions between
brighter and darker segments to infer higher probabilities of illu-
minant change and lower probabilities of material changes. The
segments on the brighter and/or yellower sides of these transitions
are identified as sunny, based on memory. Despite the fact that
segments of the image under sunlight appear yellower and bright-
er, observers feel confident that they can identify similar foliages
from sunny to shady parts of the scene.

The first purpose of this paper is to test this ability with quan-
titative measurements of the accuracy of identification of real ob-
jects/materials across real illuminants. The second purpose of this
ll rights reserved.
paper is to identify a simple observer strategy that accounts for
both correct and incorrect identifications.

A number of theories have been put forward that could explain
observer performance, and if correct would justify observer confi-
dence. The oldest such theory goes under the rubric of ‘‘color con-
stancy”, i.e., constancy of subjective appearance. Although the idea
predates him, Ives (1912) was the first to show that modeling
adaptation to the illuminant as multiplicative changes in indepen-
dent color channels leads to approximate constancy in chromatic-
ities of object colors, and thus by implication in subjective
appearance. Under prolonged adaptation to a single illuminant,
such constancies have been shown to hold quantitatively
(Bramwell & Hurlbert, 1996; de Almeida, Fiadeiro, Teixeira,
Nascimento, & Zaidi, 2007; Smithson & Zaidi, 2004), and to be
due to temporally extended but spatially local adaptation pro-
cesses (Schulz, Doerschner & Maloney, 2006; Smithson & Zaidi,
2004). Since foliage appears yellower under sunlight than in the
shade (where the main illuminant is reflected skylight), it is obvi-
ous that constancy of color appearance does not hold for scenes
with multiple illuminants (Fig. 1).

An alternative is to assume, in an analogy with brightness con-
stancy (Wallach, 1948), that the subjective constancy is not at the
level of isolated colors but at the level of color-contrasts or color-
differences. Under many conditions, color-contrast is the major
determinant of appearance (Shapiro, 2008). Unlike brightness
which varies along a single dimension, color is multi-dimensional,
so color differences can vary in a multitude of directions, to many
of which neurons may be tuned (Gegenfurtner, Kiper, Fenstemaker,
& Gegenfurtner, 1997; Kiper, Fenstemaker, & Gegenfurtner, 1997;
Lennie, Krauskopf, & Sclar, 1990). Khang and Zaidi (2002)
suggested that observers would be generally, but not universally,
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Fig. 1. ‘‘Sundance” by Ketchum (1993). Can you identify which parts are sunny and which shady? How? Why do you infer illuminant rather than material changes? Can you
identify similar foliages from sunny to shady parts?
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successful at material identification across illuminants, if they
picked materials whose chromaticity difference was parallel to
the chromaticity difference between the illuminants. This strategy
seemed to account for most correct and incorrect identifications in
a post-hoc analysis of their data, but the conditions of their exper-
iments were not sufficient to provide a critical test.

Instead of relying on constancy of percepts, other approaches
have built on invariance of physical properties. Since the spectral
reflectance of most materials is constant in the short-term (pro-
longed exposure to light can change the spectral reflectance of
many materials, e.g., human skin and fruits), extracting the spec-
tral reflectance of each material would lead to perfect object iden-
tification across illuminants (Maloney, 1999). To achieve this
purpose, a number of deterministic and probabilistic inverse-op-
tics models have been proposed to first extract the spectrum of
the illuminant and then the spectra of materials under the illumi-
nant for a variety of conditions (e.g., Brainard & Freeman, 1997;
Maloney & Wandell, 1986). It makes little sense for the human vi-
sual system to extract high-dimensional spectra because subse-
quent color computations would be high-dimensional and costly.
However, it is still worthwhile to consider such models as compu-
tational, in the sense defined by Marr (1982), and to test for object
identification accuracy in situations where recovery of stable sur-
face descriptors would be predicted, such as identical sets of ob-
jects under two distinct lights (D’Zmura and Iverson, 1993a,
1993b).

An alternative to the inverse-optics approach is to compare
cone-absorptions and subsequent neural signals from objects
across spectrally different illuminants. A number of studies have
plotted human L, M and S cone-absorptions from a variety of nat-
ural and man-made materials under one light against absorptions
under a spectrally different light, and found that the points all fall
close to straight lines joining the origin to the cone-absorptions of
the illuminants (Dannemiller, 1993; Foster & Nascimento, 1994;
Zaidi, Spehar, & DeBonet, 1997). A shift in illuminant spectra is
thus associated with a neural invariant that can be described as a
diagonal transform in cone-absorptions, an affine transform in sec-
ond-stage neural signals (Zaidi et al., 1997), and preservation of
rank-orders of cone-absorptions (Dannemiller, 1993) and cone-
contrast ratios (Foster & Nascimento, 1994). This invariant explains
why Ives-type discounting of the illuminant is computationally
successful for color constancy, and why temporally extended adap-
tation in individual cones leads to color constancy under single
illuminants (de Almeida et al., 2007; Smithson, 2005; Smithson &
Zaidi, 2004; Zaidi, 2005). More interestingly, for multiple illumi-
nant cases like Fig. 1, many affine-deformable matching algorithms
can be devised that can successfully identify reflectances across
illuminants by relying on the affine transform as an invariant
(Zaidi, 1998, 2001).

All four classes of theories predict that identification perfor-
mance should be generally accurate, but make different predic-
tions about the nature of systematic identification errors. We
introduce a method using real objects and lights that provides a
general test for all of these theories.

2. Color-based object identification

Observers looked with both eyes at the apparatus pictured in
Fig. 2(a). They were informed that the backgrounds in the two
boxes were made from the same material, but the lights were spec-
trally distinct. A pair of real objects was presented in each box.
Three of the four objects were made from the same material, and
the observer was asked to identify the object made from the odd
material. Readers can try out the same experiment and pick the
numbers corresponding to their choice of odd materials in Fig.
2(a) and then in (b). In Fig. 3(a) and (b), all four objects have been
moved to the same box, and readers can compare their picks with
the correct choices (Objects # 1 and #4, respectively). Readers who
made incorrect choices, should be aware that this demo has been
presented to many audiences, and the vast majority of observers
make incorrect choices. Given that in Fig. 2(a), neither #1 nor #2
looks exactly like #s 3 and 4, readers are urged to introspect about



Fig. 2. (a) Observer’s view of the apparatus. The pair of boxes are lined with the same materials but the lights in them differ spectrally. Three of the objects are made from the
same material (Standards), while one is made from a material of a different color (Test). Observers (and readers) are asked to pick the object number corresponding to the odd
material. (b) Another view of the apparatus. The Test is now under a different light than in the panel above.

Fig. 3. (a) The objects in Fig. 2(a) have all been moved to one box revealing that the
odd object was #1. (b) The objects in Fig. 2(b) have all been moved to one box
revealing that the odd object was #4.

Fig. 4. Side and top plans of the apparatus. For details see Robilotto and Zaidi
(2006).
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their identification strategy and compare it to the strategies dis-
cussed later in the paper.

2.1. Methods

Schematics of the side view and the floor of the apparatus are
shown in Fig. 4. Complete details of the apparatus can be found
in Robilotto and Zaidi (2006). The observer sat in front of the appa-
ratus in a dark room, was allowed to take as much time as needed
on each trial, and given one practice session before collecting data.
Feedback about correct or incorrect answers was not provided dur-
ing the practice or actual sessions.

We would have liked to use the spectra of Sunlight and
Skylight (Taylor & Kerr, 1941) for the two illuminants, but given
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the limitations of available color-correcting filters, we settled for
two lights whose spectra (measured directly with a Photo-
Research SpectraScan PR-704 at 2 nm intervals) are shown in Fig.
5(a), and whose MacLeod and Boynton (1979) chromaticities are
shown in Fig. 5(b). The spectra were obtained by filtering 50-W
SoLux light bulbs (color temperature = 4700 K; beam-spread = 36�;
Tailored Lighting, Rochester, NY) with Kodak color-correcting fil-
ters, and passing the lights through holographic diffusers to ensure
uniform illuminant intensity (diffusion angles = 30�; Physical
Optics Corporation, Torrance, CA). The lamps were not visible to
the observers. In isolation, one of the lights appeared blue-green
and the other yellow-red, as is expected from their chromaticities
in the Macleod–Boynton diagram where the achromatic point is at
(.66, .015).

The sides, backs, and floors of the two boxes were covered with
a pattern of colored ellipses and lines that averaged to a gray under
neutral light. The three objects in each trial that are made of iden-
tical materials, are called Standards, the odd object is called the
Test. All objects in this study were made by printing chosen colors
on a laser color-printer. Given nonlinearities in combinations of
inks and the variations in inks from batch to batch, we found that
even the use of professional inks did not allow us to calibrate the
printer to the accuracy required by vision experiments. Therefore,
Fig. 5. (a) Spectra of the yellow-red and blue-green lights. (b) MacLeod–Boynton
chromaticity diagram. The dashed line connects the chromaticity of the illuminants.
The colored lines connect the chromaticities of each Standard under the two lights.
we used the best approximate color coordinates for the printer, but
the spectrum of light reflected by each paper under each illumi-
nant was measured directly with a Photo-Research SpectraScan
PR-704 at 2 nm intervals using flat papers in a fixed stand. The pa-
pers were rolled to make cylinders. The Standards were chosen to
sample different parts of color space. We used four Standards, gray,
cyan, magenta, and yellow in appearance. Their chromaticities un-
der each of the lights (converted from spectral measurements) are
shown in Fig. 5(b). Besides the gray standard we used standards
close to the printer’s primaries because this provided colors of rea-
sonable saturation spread over the chromaticity diagram, which al-
lowed a range of tests to be printable. We intended to derive
discrimination and identification thresholds as was done by Khang
and Zaidi (2002) and Robilotto and Zaidi (2004), so a number of
Tests were compared to each Standard, some of which we expected
not to be reliably discriminable from the Standard (Total number
of Tests = 120). We intended to use Tests that differed from the
Standards along a color line parallel to the line joining the illumi-
nant chromaticities or orthogonal to it, but given the limitations of
control over colored dye mixtures, we could only approximate
such lines. To use the same Tests under both lights, the Tests were
distributed in chromaticity on both sides of the Standards. Each
Standard–Test–Illuminant condition was run 10 times per obser-
ver. Each session consisted of a trial each for all conditions. Given
the limitations of stimulus generation and data collection (each
trial required the experimenter to manually change the stimuli
out of the observer’s sight), it was not possible to collect sufficient
data to estimate thresholds.

Two color-normal female observers were run in this experi-
ment. They were informed about the purpose of the experiment
only at the conclusion of data collection. Observer RH had previ-
ously participated in lightness constancy experiments in a different
institution. Observer KS had previously participated in a color dif-
ference study using a CRT.

2.2. Results

When observers are asked to identify the odd object, they first
have to decide which box is more likely to contain two objects that
differ in materials. For any Test–Standard–Illuminant combination,
if the observer chooses an object in the correct box for at least 8 out
of 10 trials, then this is sufficient to reject the null hypothesis of
chance selection of boxes with a probability greater than .95, and
to accept that the observer can reliably discriminate between that
Test and that Standard under that Illuminant (Using a binomial dis-
tribution with p = .5). The discrimination results for the two
observers are shown in Fig. 6(a) and (b). The points flanking the
chromaticity of each Standard are the chromaticities of all the
Tests. A few of the Tests could not be discriminated from the Stan-
dards, so identification performance for these Tests is not relevant,
and they are left out of the subsequent analysis.

If observers can discriminate between two objects in one of the
two boxes, then they have to decide which object in that box is less
likely to be made from the same material as the two objects in the
other box. In the data analysis, the Tests that could be reliably dis-
criminated as derived from the proportion of box-correct re-
sponses can then be divided into three classes according to the
proportion of object-correct responses. If the odd object was
picked correctly on enough trials so that the null hypothesis of
chance selection of objects given the correct box can be rejected
with a probability greater than .95 with a one-tailed test, then
the Test was considered to be correctly identified. Since we only
considered objects that were reliably discriminated, i.e., 8, 9 or
10 box-correct responses out of 10, using the binomial distribution
with p = .5, this means identifying the Test object correctly for at
least 8 out of the 10, 7 out of the 9 or 6 out of the 8 box-correct



Fig. 6. Each panel presents discrimination results for each Standard under each of the two lights. The line connects the chromaticities of the illuminants. This line has the
same coordinates in all four panels, so it provides a landmark for the chromaticities of the other stimuli. The + and X represent the chromaticities of the Standard under the
blue-green and yellow-red lights, respectively. The triangles pointing up are the chromaticities of the Tests under the blue-green light, and the triangles pointing down are the
chromaticities of the Tests under the yellow-red light. The gray triangles represent Tests that could be reliably discriminated from the Standards (p > .95), whereas the open
triangles represent Tests that could not be reliably discriminated from the Standards. (a) Observer RH. (b) Observer KS.
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trails. On the other hand, if the Standard in the correct box was
incorrectly chosen as the odd object on enough trials that the null
hypothesis of chance selection of objects given the correct box can
be rejected with a probability greater than .95 on the other tail,
then the Test was considered to be reliably misidentified. If the null
hypothesis cannot be rejected on either tail, then despite being dis-
criminable from the Standard, the Test was considered neither cor-
rectly identified nor misidentified. Identification results are plotted
in Fig. 7(a) and (b)

There are a number of patterns that stand out in the results.
First, identification across illuminants is more difficult than dis-
crimination within illuminants, as some Tests that were reliably
discriminated from the Standards were neither correctly identified
nor misidentified. This is unlikely to be a deficit in chromatic dis-
crimination which survives gaps in time and space (Danilova &
Mollon, 2006; Sachtler & Zaidi, 1992). These points have been
omitted from Fig. 7 to highlight the important results, but can be
inferred by comparisons to Fig. 6 Second, there are a significant
number of reliable misidentifications where the Standard is chosen
as the odd object. Third, as would be expected, at sufficient color
distances from the Standard, Tests on both sides of the Standard
along a color line are reliably identified. Fourth, and most



Fig. 7. Each panel presents identification results for each Standard under each of the two lights for those Tests that could be reliably discriminated. Symbols are used in the
same manner as Fig. 6, except that dark triangles represent Tests that were correctly identified (p > .95), gray triangles represent Tests that were misidentified (p > .95). Tests
that were neither correctly identified nor misidentified, clustered around the Standard, and are not shown. (a) Observer RH. (b) Observer KS.
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importantly, close to the color of the Standard, misidentified and
correctly identified Tests tend to fall on opposite sides, and to
switch sides across illuminants.

2.3. Implications

These results have a number of implications for theories of color
constancy. First, since the Standard object was present on every
trial, if subjective color constancy existed in this situation, the ob-
server should have no problem picking the Test as the odd reflec-
tance on every trial where it can be discriminated from the
Standard under the same light. It is possible that due to color adap-
tation, Standards across the two light appear more similar than
they would without adaptation, but clearly this partial adjustment
is not sufficient to support precise object identification. Similarly,
to the extent that contrast-constancy holds, it too is not sufficient.
The result that misidentified objects switch sides around the Stan-
dard under the two illuminants, serves to rule out a number of
models. If Ives-type adaptation underlies color constancy, then cer-
tain reflectances will not be ‘‘corrected” as well as others. However,
if this is the main problem, the same materials should be misiden-
tified under either illuminant, and that is clearly not the case.

In addition, there was sufficient information in the scene for
both the inverse-optics and the neural-invariants based matching
approaches to solve the identification problem. D’Zmura and
Iverson (1993a, 1993b) showed that recovery of constant surface
descriptors is possible for a system with three classes of photore-
ceptors, given three distinct reflectances under two different illu-
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minants, if surface reflectances and illuminant spectra are well de-
scribed by three-dimensional linear models. Given the variegated
backgrounds, the conditions in Exp 1 consist of two illuminants
and many more than three reflectances, so reflectance recovery is
formally possible, if spectra are three-dimensional. Similarly, Zaidi
(1998) showed that when the same collection of reflectances is
presented under two illuminants, the chromaticities of the objects
are related by an affine transform across illuminants, and it is easy
to identify reflectance correspondence by estimating parameters of
the affine transform. This is true for Lambertian surfaces and non-
Lambertian surfaces in constant positions (Zaidi, 2001). However,
since adequate representation of surface spectra require more than
three dimensions (Nascimento, Foster, & Amano 2005), departures
from perfect reflectance identification in the inverse-optics ap-
proaches could be attributed to imperfect representation. Simi-
larly, identification errors would be predicted for those materials
whose reflectances deviate from the affine transform in the match-
ing algorithms (Zaidi, 1998). However, such deviations cannot ex-
plain the result that different sets of reflectances are systematically
misidentified under different illuminants. In addition, the result
that the patterns of identifications and misidentifications are sim-
ilar for color lines parallel or orthogonal to the difference between
the illuminant chromaticities, rules out the idea that misidentifica-
tions are caused by object matches on color lines parallel to the
illuminant change (Khang & Zaidi, 2002).

Given the carnage of existing theories above, we decided to test
whether a simple perceptual strategy could account for the distinct
patterns of identifications and misidentifications under the differ-
ent illuminants. In similar experiments on achromatic objects,
Robilotto and Zaidi (2004) showed that perceived relative bright-
ness could account for lightness identification performance. In
the next section, we test whether perceived relative colors can ac-
count for color based identification performance.

3. Relative color percepts and object identification

Our purpose in measuring relative colors is to test the relation
of correct identifications (and misidentifications) to relative color
Fig. 8. Each panel presents relative color-categorization results for each Standard under e
color of the triangle represents the perceived color of the Test relative to the color of th
categories. Besides the two observers from Exp 1, to insure that
judgments in the relative measurements were not contaminated
by the identification judgments, we also used a different observer
(the first author) for the categorizations. Measuring perceived rel-
ative colors is tricky, and the choice of color names can be idiosyn-
cratic. When a red material is compared to an orange one, most
observers call the orange yellower than the red, but the red redder
than the orange. Similarly pink is called whiter than red, but red is
called redder than pink. Observers are more likely to report incre-
ments of hues rather than decrements, and inferring decrements,
e.g., on the basis of opponent colors, is problematic. Asking observ-
ers whether a yellow (or pink) is greener than a red, elicits looks of
incomprehension. After piloting a number of different procedures,
we chose the following because it gave reasonable concordance
across observers. To measure relative color percepts for our exper-
imental objects, we used only one of the boxes at a time. A Stan-
dard and a Test were placed in the box, and the observer was
instructed to say whether the Test was predominantly greener,
redder, yellower, or bluer than the Standard. Observer QZ’s results
are shown in Fig. 8 It is interesting that the observer chose to use
yellower–bluer distinctions for the Tests that were compared to
the Gray and Magenta Standards and redder–greener distinctions
for the Tests that were compared to the Cyan and Yellow Stan-
dards. This implies that the salience of relative hues depend not
only on color direction, but also on location in chromaticity space.
In general, Tests separated into opposing relative color groups
around the chromaticity of the Standard, but there were excep-
tions, particularly when the color-line of Tests did not pass through
the chromaticity of the Standard. Also, in general, the division was
similar for each Standard under both illuminants. Results of the
other two observers were similar to Observer QZ’s, differing mainly
in the number of Tests each observer perceived as too similar to
the Standard for reliable classification.

3.1. Color-similarity based object-identification algorithm

In explaining reflectance identification (and misidentification)
of achromatic objects under achromatic lights, we showed that
ach of the two lights. Symbols are used in the same manner as Fig. 6, except that the
e Standard.
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observers do not have any access to surface albedos, so they use
similarity in perceived brightness as a surrogate for reflectance
similarity (Robilotto & Zaidi, 2004), which would be an optimal
strategy only if lightness constancy was a valid assumption. In
the present experiment, the difference between the illuminants
is spectral and not just intensive. To test whether observers iden-
tify objects across colored illuminants on the basis of color similar-
ity, we tested the following algorithm which gives primacy to
similarity along the color axis between the two illuminants:

STEP 1. Identify the illuminant on the test (It) by finding the side
on which the two objects have different colors.
STEP 2. Compare the colors of the backgrounds to judge the
change in color from It to the illuminant on the two Standards
(Is).
STEP 3. Pick as the odd object, the object that is most dissimilar
to the others when the relative colors are projected onto the
perceived It � Is color direction.

The algorithm can be expressed in terms of perceived relative
colors as follows. For Tests under the blue-green light, e.g., Fig.
2(a), the algorithm predicts that Tests perceived as bluer or greener
than the Standard under the same light, will be picked correctly as
the odd object, but Tests perceived as yellower or redder than the
Standard under the same light, will not be picked as the odd object,
unless they are perceived to be at least as yellow or red as the Stan-
dards under the yellow-red light in the other box. For Tests under
the yellow-red light, e.g., Fig. 2(b), Tests perceived as yellower or
redder than the Standard under the same light, will be picked cor-
rectly as the odd object in the identification experiment, but Tests
perceived as bluer or greener than the Standard under the same
light, will not be picked as the odd object unless they are perceived
to be at least as blue or green as the Standards under the blue-
green light in the other box.

We used the relative color categorization results to predict cor-
rect and incorrect object identifications by using the above algo-
rithm, and compared them to the identification results. The
cross-tabulation of predicted and observed identifications is shown
in Table 1a and Table 1b. Combined over the two observers RH and
KS, of the Tests that could be discriminated reliably from the Stan-
dard in Exp 1 and Exp 2, 86% of correct identifications and 96% of
misidentifications were predicted correctly by the algorithm using
observer QZ’s categorizations. These numbers are similar to those
Table 1a
Relative color categorization results of QZ were used in the similarity-based
algorithm to predict object identification results for RH and KS

Predicted Observed

I G M Total

I 80 2 2 84
M 13 16 48 77
Total 93 18 50 161

I, correct identification; M, misidentification; G, neither correct nor incorrect
identification.

Table 1b
Relative color categorization results of RH and KS were used in the similarity-based
algorithm to predict their own object identification results

Predicted Observed

I G M Total

I 65 5 3 73
M 9 12 42 63
Total 74 17 45 136

I, correct identification; M, misidentification; G, neither correct nor incorrect
identification.
predicted correctly when each observer’s identifications are com-
pared with their own categorizations, i.e., 88% of correct identifica-
tions and 93% of misidentifications for he two observers combined.
It is clear that the similarity-based algorithm accounts for most of
the identification results.
4. Discussion

The voluminous literature on color constancy has been summa-
rized in many places (e.g., Brainard, 2004). Interest in color con-
stancy is generally implicitly, but sometimes explicitly, driven by
the putative role of color in object recognition and identification
(Hurlbert, 1998), but the methods have generally been confined
to subjective appearance measurements (Foster, 2003). In this pa-
per, we have directly tackled object identification/recognition on
the basis of color, using a forced-choice performance measure. This
performance may incorporate volitional judgments as well as per-
ceptual factors. In fact, the proposed similarity-based strategy re-
quires perceiving the relative colors of the illuminants, and the
relative colors of the objects, and then making judgments on the
basis of perceived similarities of color differences.

In perceiving colors of illuminants, Khang and Zaidi (2004)
showed that for scenes with a single illuminant, observers use
the spatial average to infer the color of the illuminant. In the pres-
ent study, the achromatic spatial average of the backgrounds
would give decent estimates of the illuminant colors. It would be
interesting to see if identification performance would change if
the average color of the background was not achromatic, and if this
would be due to biased estimates of the color difference between
the illuminants.

In perceiving colors of objects, adaptation to a single illuminant
does lead to the color of a material appearing similar in different
lights, but complete adaptation to a single illuminant is unlikely
to occur in natural settings, and cognitive factors seem to play a
part in even simple color reports (Smithson, 2005; Zaidi, 2005). A
role is also often suggested for simultaneous color induction in col-
or constancy, but the presence of high spatial frequencies in varie-
gated color backgrounds drastically reduces the amount of
induction on uniformly colored objects (Hurlbert, & Wolf, 2003;
Zaidi, 1999; Zaidi, Yoshimi, Flanigan, & Canova, 1992)

The use of a suboptimal similarity-based strategy by observers
raises some important questions. First, why do observers use color
similarity for object identification despite the demonstrable ab-
sence of color constancy? It is a common experience that the same
material looks different indoors than outdoors, so a color match
across illuminants is actually a more reliable indicator of material
difference than of material identity, and for optimal functioning,
the visual system should learn to use such false matches. Second,
why are other more accurate strategies not used? As stated earlier,
there is sufficient information in the experimental situation in this
study, that simple algorithms using justifiable prior assumptions
could solve the identification problem accurately. It remains to
be explained why the visual system does not learn such strategies,
when it seems to have learned quite complex strategies for solving
stereo correspondence, including the use of false matches (Read &
Cumming, 2007). Is there a lack of negative reinforcement for
wrong decisions because objects that are misidentified across illu-
minants have similar enough properties to suffice for each other, or
was there little evolutionary pressure because changes in natural
lights are predominantly along the yellow–blue axis (Mollon,
2006) and do not hamper identification across the red–green axis
that defines the distinction between many ripe and unripe fruits.
Third, how does this suboptimal performance relate to recent at-
tempts to model human perceptual performance in terms of opti-
mal statistical models (e.g., Knill, & Richards, 1996)? It is possible
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to think of the visual system in a more general way than as just a
combiner of prior probabilities and data likelihoods. In choosing
between strategies, the visual system could behave as a statisti-
cally optimal model selector which incorporates Occam’s razor so
that the operations or costs of computations are weighted in strat-
egy selection (MacKay, 2003). If more accurate algorithms require
more computations than the similarity-based algorithm, the addi-
tional costs may outweigh the benefits of improved identification,
especially if there is time–pressure and more important computa-
tions need to be completed. A much simpler but almost optimal
strategy would be preferred to a computationally intensive optimal
strategy by such an opportunistic Bayesian.

Looking ahead, this study shows that it is worthwhile to directly
study color-based object identification/recognition, because it
raises interesting issues that go beyond questions of constant sub-
jective percepts. The resolution of some of these issues may pro-
vide clues to the efficient functioning of the visual system in
areas broader than color perception.
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